G. F. S. A.	Mathematics Department , Faculty of Science ,Tanta University		
	Branch: Math. Dept.	Sub-branch : Mathematics	
	Examination for: Level three	Term: first Term 2016-2017	
	Course Title: Mathematical Logic and	Course Code: MA3113	
	Boolean Algebra		
1969	Date: 9/1/2017 Total Mark: 100	Time Allowed: 2 Hours	
	,		

Answer the following questions:

First: Mathematical Logic.

Question 1 (30 marks):

- a) Show that $(\neg (A \to (B \lor C)) \to (A \land (\neg B \land \neg C))$ is a wff. (10 marks)
- b) Is $(((P \to Q) \to P) \to P)$ a tautology? Define σ_k recursively as follows: $\sigma_0 = P \to Q$ and $\sigma_{k+1} = (\sigma_k \to P)$. For which values of k is σ_k is a tautology? (10 marks)
- c) Let G be the following three-place Boolean function:

$$G(F,F,F)=F,$$
 $G(T,F,F)=T,$ $G(F,F,T)=T,$ $G(T,F,T)=F,$ $G(F,T,F)=T,$ $G(T,T,F)=F,$ $G(T,T,T)=F.$

Find a wff, using at most the connectives V, Λ , and \neg that realizes G. (10 marks)

Question 2 (20 marks):

- a) In the first-order logic language, define the following:
 the terms, an atomic formula, the well-formed formula. (9 marks)
- b) Rewrite the following wff in a way which explicitly lists each symbol in actual order. Say which variable occur free in the wff:

$$\forall v_1 A v_1 \land B v_1 \to \exists v_2 \neg C v_2 \lor D v_2. \tag{6 marks}$$

- c) In the language of elementary number theory, translate the following sentence in a more formal way:
 - "Any nonzero natural number is the successor some number". (5 marks)

Second: Boolean Algebra.

Question 3 (20 marks):

- a) Let f(x, y, z) be the Boolean function represented by Table (1), then:
- (i) Find f(x, y, z). (2 marks)
- (ii) Represent f(x, y, z) by logic and series-parallel circuits and then find the differences between the two circuit types. (5 marks)

← Please turn the page over

TANTA UNIVERSITY **FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS**

Final Term Exam for 3rd year students of Mathematics

2016-2017 First Term

Course Code: MA3107 Course Title: Algebra (1) Time Allowed: 2 Hours

Date: 4/1/2017 | Total Mark: 150 Marks

Answer the following questions:

Question 1 (30 marks):

Prove that the set, I(G), of all inner automorphisms forms a group under composition of maps. Show that $I(G) \cong G/Z$, then write the elements of the group $I(D_4)$.

Question 2 (30 marks):

Find the derived group of the alternating group A_4 . (15 marks)

b- Let $\varphi: G \to H$ be a homomorphism and let S be a subgroup of H. Prove that $\varphi^{-1}(S) = \{x \in G : \varphi(x) \in S\}$ is a subgroup of G (15 marks) containing $ker\varphi$.

Ouestion 3 (45 marks):

- a- Consider the symmetric group S_5 . Let $\rho = (1)(23)(45)$. Write all the elements of S_5 that are conjugate to ρ , hence determine all the elements of the centralizer subgroup $C(\rho)$. (20 marks)
- b- Without doing any calculations in $Aut(Z_{20})$, prove that $Aut(Z_{20})$ is (10 marks)not cyclic.
- c- Find the complete list of the distinct isomorphism classes of abelain (15 marks) groups of order 100.

a display

Question 4: (Maximum Mark: 15)

a. Consider the following ordinary differential equation with $x \in \mathbb{R}^+$:

$$xy'' + 2y' + xy = 0.$$

- Show that $y(x) = \frac{xy'' + 2y' + xy = 0}{x}$ is a solution of this equation.
- Find the second independent solution. ii.
- iii. Write out an expression for the general solution.

Question 5: (Maximum Mark: 40)

Solve the following ordinary differential equations:

i.
$$y'' - 2y' - 48y = 5e^{-6x} + (x - 2)e^{-8x}$$
.

ii.
$$x^2y'' + 5xy' + 4y = \frac{\sec^{-1}\ln x}{x^2}$$

iii.
$$\dot{x} - 2x(t) - 8y(t) = f(t), \ \dot{x} + 2\dot{y} - 4y = t, \ x(0) = 0, y(0) = 0,$$

$$f(t) = \begin{cases} t, & 0 \le t < 10 \\ 10, & t \ge 10. \end{cases}$$

The End of Exam

With Bost Wishes

Third question: (36 Marks)

- (a) If $\int_{a}^{b} f \, dg$ exists. Prove that
 - (1) $\int_{a}^{b} g \, df \quad \text{exists} \qquad (2) \quad \int_{a}^{b} g \, df = g(b)f(b) g(a)f(a) \int_{a}^{b} f \, dg$
- (b) Let f be any function with continuous derivative on [a,b].

Let $a = a_0 < a_1 < \dots < a_N = b$ and define

$$g(x) = \begin{cases} C_i; & a_{i-1} < x \le a_i \\ C_0; & x = a \end{cases}; \quad i = \overline{1, N}$$

where C_0, C_1, \dots, C_N are constants. Prove that

$$(1) \int_{a}^{b} g(x) df(x) \text{ exists } (2) \int_{a}^{b} g(x) f(x) dx = C_{N} f(b) - C_{0} f(a) - \sum_{j=0}^{N-1} f(a_{j}) \cdot (C_{j+1} - C_{j})$$

(c) Show that the function $f(x) = \begin{cases} x \sin \frac{1}{x}; & x \neq 0 \\ 0; & x = 0 \end{cases}$ is unbounded variation on [0,1].

Fourth Question (38 Marks)

(a) Find the complex form of the Fourier series for the complex function f(x). Hence if $\{C_n\}_{-\infty}^{\infty}$ have a bounded variation and $\lim_{n\to\infty} C_n = \lim_{n\to\infty} C_{-n} = 0$.

Prove that $\sum_{n=-\infty}^{\infty} C_n e^{inx}$ converges uniformly on every interval [c,d], where either $-\pi \le c < d < 0$ or $0 < c < d \le \pi$.

- (b) Let f and g be two continuous functions on the interval $[-\pi, \pi]$ which have the same Fourier coefficients. Prove that f(x) = g(x) for all $x \in [-\pi, \pi]$.
- (c) Suppose that f(x) and g(x) bounded variation on [a,b]. Prove that f-g and fg are of bounded variation.

(Best wishes)

	1- Prof. Dr. S. Abdel Aziz	2- Dr. Usama A. Embaby	
Examiners:			

		,